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ONE PAGE SUMMARY  
At the request of the network members two summaries have been provided – this single page overview,  
a longer Executive Summary which follows. 

Since 2018, Aedes Invasive Mosquito (AIM) COST Action (Project ID: CA17108) has promoted European 
networking and collaboration between the researchers, public health professional and the public so as 
to increase harmonisation, preparedness and capacity for surveillance and control of AIM vector 
species. Two of its defined outputs is Integrating surveillance data analysis, spatial modelling & mapping 
to ensure the quality and applicability of future technical outputs at the European level (T1.2); and 
Guidelines of Customisation of mapped Outputs (D3.4).  This document addresses these  by setting out 
a Roadmap of activities from: 1) surveillance of vector distributions to aid vector control to mitigate 
nuisance and disease risk through to 2) the modelling needed to fill the gaps in surveillance outputs to 
make the maps complete, and 3) the production of maps needed to communicate the outputs to a 
range of stakeholders  

The Roadmap is not intended to be a comprehensive guide to all the many complex procedures and 
specialist methodologies that contribute to this chain of activities. Rather it is intended to be an 
extended aide memoire for a wide range of non-specialist professionals, providing recommendations 
for best practice for each of the major components. 

The document summarises and illustrates activities contributing to four major Roadmap components: 

Surveillance: The section covers sampling, data exploration, preparation and reporting. Overviews are 
given of the factors involved in identifying the places to sample, as well as when and how often the 
samples should be taken, and what parameters should be recorded. Some aspects of data processing 
and manipulation, standardisation and validation are also discussed, together with what elements of 
the recorded sample data should be included in published results to ensure consistency and usability by 
as wide a readership as possible.  

Modelling: This section first discusses elements that need to be considered before modelling can be 
implemented, specifically issues of data scale, data aggregation and also the datasets other than the 
vector data, i.e. the predictor covariates that are needed to run a model. Two types of models are 
described: spatial models that usually produce static predicted vector distributions; and mathematical 
models that provide dynamic estimates of vector populations over time. The methods for both model 
families are set out and the constraints and prerequisites for effective modelling are illustrated.  

Data visualisation and mapping: Both sampling and modelling are complex , so the results of which 
need to be communicated concisely, very often using the same outputs for a wide range of users. The 
key point emphasised throughout is that the map producer needs to have a clear concept of the 
message to be delivered. The section sets out the basic principles of cartography and mapping, links 
map design to the type of data the map contains,  and illustrates some common mistakes to avoid.  

Implementation and integration: The final section focuses on integration and implementation, with the 
specific example of Aedes aegypti considered as a use case. The content is derived from a series of 
workshops run during the Action Annual Meeting in Rome in February 2023, where participants were 
asked to devise strategies to promote integration at the operation level for each of the surveillance, 
mapping and modelling components, using this Road map for guidance.    

The main activities identified were first to establish situation by confirming the true presence/absence of 
the vector in the region of first detection, and define sampling strategy needed to provide that information, 
including defining where to put traps using existing vector models or habitat suitability thresholds if available. 
The next step should be to use modelling to predict likely direction and extent of spread, using the predictions 
to define wider scale surveillance to monitor spread.  Key to success is communication – namely providing 
maps of sampling results and distribution models,  and predicted spread to stakeholders at the earliest 
opportunity .
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EXECUTIVE SUMMARY  
This document addresses several planned products for Aedes Invasive Mosquito (AIM) COST Action (Project 
ID: CA17108), namely:- Task 1.2: Integrating surveillance data analysis, spatial modelling & mapping to 
ensure the quality and applicability of future technical outputs at the European level; Deliverable 3.3: 
Synthesised feedback with recommendation for customising surveillance, control and modelling guidelines; 
and Deliverable 3.4: Guidelines for customisation of mapped outputs.  

In order to effectively manage the nuisance and disease risk due to invasive mosquitos (and the pathogens 
they carry), we need to know where they are and anticipate where they will be and how prolific they will be 
where they are. This means we have to sample and map their locations, and refer to modelling techniques 
to patch up any gaps emerging in our knowledge. Here, we set out a high-level overview, a Roadmap, of 
activities comprising surveillance, modelling, data visualisation and mapping, and implementation and 
integration for Aedes invasive mosquito species. We aim to inform control but not to cover specific control 
methods or strategies. We also do not address training needs or provide detailed guidelines for sampling, or 
any other component. Instead, we aim to provide recommendations for best practice for each activity, from 
surveillance to implementation, for a wide range of non-specialist professionals. 

SAMPLING 

Defining a sampling strategy starts by precisely defining the objectives. Multiple decisions are required at 
this point to design an efficient and useful sampling effort: how often to sample, where to sample, which 
protocols to employ, and what parameters to record during sampling. Whether the objective is to detect 
presence, to perform control or assess control effectiveness, or to estimate disease risk, a key constraint is 
to ensure that any sampling is repeatable and is sufficiently standardised to produce results that are 
comparable between different locations and times. An example is provided by the AIMSURV initiative 
(Miranda et al., 2022), facilitated by AIM-COST to harmonize sampling activities and protocols used by 
European entomologists and implement data sharing and publication processes. 

Fieldwork is usually designed in the form of cross-sectional sampling, where multiple locations are sampled 
only once, or longitudinal sampling, where the same locations are sampled repeatedly. Cross-sectional 
sampling covers a wider area with the same number of traps, and its output can be used for presence and 
absence modelling, i.e. to project species distribution. For this, sampling locations are assigned to different 
geographical zones (or strata) related to the biology of the vector, e.g. vegetation category. Seasonality is an 
important concern in determining sampling times. For instance, when detecting the presence of a target 
species, you should aim to sample at the height of activity. Longitudinal sampling, on the other hand, 
monitors populations over time, which makes the results suitable for mathematical modelling (also called 
dynamic or mechanistic modelling). Mathematical modelling concerns projecting population dynamics 
(abundance as well as activity), and it requires data capturing change in the environment and its effects on 
the population. As additional evidence, you may include samples of different life stages collected from 
different habitats and at times beyond the limits of vector activity. 

When designing a sampling strategy for the first time either for a species, or an area, carry out exploratory 
sampling. Determine the locations to cover plausible niches, and the sample sizes to balance labour and 
statistical rigor as well as possible. Useful information can be gathered by simply examining the results, or 
visualising the data as maps. 

Two keys to good sampling deserve highlighting: one is matching the sampling to the objective, as we 
outlined above, and the other is the reproducibility of the methods by using standardized protocols. In order 
to make sample reports comparable from study to study, recorded numbers need to be standardised 
according to sampling effort, and the samples need to be adequately georeferenced and time stamped. The 
minimum requirements for reporting can be summarised as follows: trap type/sample methods, number of 
traps/sample events, start and end collection dates, trap/sample geographical coordinates and location 
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descriptors, number of specimens caught by species (including zeros), and method of species identification. 
It is just as important to know where a species in not found as it is to record its presence or abundance. 
Particularly, the beginning or end of a season, or the edge of a species known range, bears valuable 
information to train a good model. 

MODELLING 

Species distribution and abundance are determined by biotic factors, such as predation, nutrient availability, 
and growth rate, and abiotic factors, such as temperature, rainfall, and humidity. Spatial (or statistical) 
modelling establishes statistical relationships between these factors (covariates) and species 
presence/absence or abundance data (observations) collected from a set of locations. It then applies these 
relationships to predict presence/absence or abundance at other locations. Statistical relationships between 
covariates and observations are only as robust as the set of observations allows. How large the set should 
be? depends on the complexity of the relationships you wish to validate. The outputs of species distribution 
models usually do not reflect temporal or seasonal changes, and thus, are visualised as static maps. 

Due to the extent and complexity of many environmental datasets, data reduction techniques can be applied. 
These yield summary statistics, such as minima, maxima, or temperature of the warmest quarter. 
Correlations between covariates, such as vegetation and temperature (or rainfall), interfere with the 
modelling process, and should be removed in advance. Advanced statistical methods, such as temporal 
Fourier analysis, can be used to remove potential correlations and to summarise long time series data.  

Machine learning models are widely used in spatial modelling. These use algorithms to find patterns in the 
data, classify observations, and project future distributions. Machine learning is data-driven, and useful when 
dealing with "wide data", where the number of covariates exceeds the number of observations. It masters 
complex relationships, but cannot isolate the effect of a single covariate. Also, it is ideal when you are not 
interested in (directly) estimating uncertainty. 

In contrast to spatial modelling, mathematical modelling is process based, or mechanistic. It concerns 
creating a mathematical representation of the biological/ecological processes and the covariates driving their 
dynamics and interactions. Constructing such complex relationships requires extensive data collection and 
expert consultation. Any observation is good for model calibration and validation, as long as it is comparable 
with a particular model output. These include (i) number of eggs in an ovitrap, (ii) number of adults caught 
in an adult trap, and (iii) number of bites reported by a person. However, longitudinal observations are 
preferred, as they capture the dynamics of populations and covariates. Mathematical models may represent 
spatial and temporal dynamics of vector populations, including adult activity and abundance, duration of the 
peak season, and the first emergence of adults. Such indicators can be summarised into future projections 
(for the dynamics) and maps (for the distribution) of risk. 

Regardless of their type, models are constructed, calibrated (trained or configured), and validated (tested). 
Model construction relies on a particular mathematical method and expert knowledge (for picking up the 
right covariates, performing supervised machine learning, or composing mathematical representations). 
Once constructed, we perform training and testing by splitting the data in 2 or 3 independent subsets. The 
largest subset (70–80%), the training set, is used to calibrate your model (to configure internal parameters). 
An optional intermediate subset (10–15%) can be used for validation and finetuning. The last 10–15% 
constitutes the test set, which is used to evaluate model performance. This way, you use independent data 
sets at each step and avoid a self-fulfilling prophecy. If you use the same data to train and test your model, 
you risk becoming too good when predicting your own data, but farcical when presented with an out-of-
sample case. 

DATA VISUALISATION AND MAPPING 

Maps are efficient ways of rapidly displaying complex information about a single parameter. They can be 
used to validate data entry and to locate outliers or anomalous values, which may represent errors. Mapping 
can be helpful for typical situations, such as planning fieldwork for surveillance, planning monitoring for 
interventions or management of decision making. Simply mapping sampling locations will provide 
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information about the sampling effort, spatial imbalances, and gaps. They are most used however as ways 
to convey information to a wide range of technical and lay audiences.  

There is no single way of mapping: the cartographer bears the responsibility of proposing something that 
allows the reader to draw relevant conclusions. Whatever the audience, you must first identify the message 
you want your map to convey. Then you must identify how the map can help you get that message across. 
The map needs to do that by itself, i.e. be clear and easy to read. As a rule of thumb, a map is only necessary 
if we consider that spatial heterogeneity matters. If one trap or model, or the aggregated (or maximum value 
across places) observation or prediction provides the information needed, then a map is unnecessary. A 
graph following the progress of values may be more useful. 

Spatial data, e.g. trapping locations, have associated numerical or categorical attributes which may include 
their geographical coordinates, dates of trapping, trap type, person trapping, and number of mosquitoes 
collected. Any parameter, including model outputs, can be an attribute as long as it is linked to the spatial 
entity by identifiers or geographical coordinates. Variables representing absolute numbers, e.g. total 
population, number of schools, number of disease cases, are mapped using symbols of varying size. 
Choropleth maps - maps in which an entire area, typically an administrative unit, is given a colour - are more 
appropriate for proportions, e.g. population densities, schools per inhabitant, and disease incidence rate. 

Any flat map distorts the actual (spherical) distance between two locations. To try to minimise such 
distortions maps can be drawn using different projections, where the distance on the ground is represented 
differently on a map. Maps can only be combined if they have the same projection. The map scale results 
from the combination of the scales of the data presented and the mapping choices. It is important to be 
consistent and to harmonise by using the same amount of detail across a map. The background should be 
relevant to the information to be communicated but also not be too cluttered. 

Spatial displays can be summarised into coarser units through spatial aggregation. Administrative units have 
the advantage of being widely recognised on a map as well as summarising mapping results in terms of 
operational structures for decision-making. Attributes can also be aggregated by categories or by thresholds 
(for continuous variables) leading to  different class memberships and so different outcome maps. 

Aggregating data also helps to protect confidentiality, especially for health-related data and endangered 
species observations. The use of a big symbol is insufficient as the location can be easily deduced. To 
overcome this, some software packages are able to "jitter" positions (slightly reposition). What may also help 
is to remove identifying elements. 

It is difficult to represent confidence intervals on the same map as the average values, and so they are rarely 
mapped. To find ways to integrate them when they matter is a growing interest. Possible solutions may 
involve adding two supplementary maps that show the low and high confidence bounds, or greying out areas 
that fall outside the confidence interval. 

IMPLEMENTATION AND INTEGRATION 

The final section focuses on integration and implementation, with the specific example of Aedes aegypti 
considered as a use case. The content is derived from a series of workshops run during the Action Annual 
Meeting in Rome in February 2023, where participants were asked to devise strategies to promote 
integration at the operation level for each of the surveillance, mapping and modelling components, 
using this Road map for guidance.    

The main activities identified were first to establish situation by confirming the true presence/absence of 
the vector in the region of first detection, and to define sampling strategy needed to provide that 
information, including defining where to put traps using existing vector models or habitat suitability 
thresholds if available. This strategy is likely to be affected by the abundance of the target population, the 
weather condition during sampling and the sensitivity of the sampling methods used. The next step should 
be to use modelling to predict likely direction and extent of spread, using the predictions to define wider 
scale surveillance needed to monitor spread.  Key to implementation success is communication – namely 
providing customised maps, charts and interpretations of sampling results, distribution models and predicted 
spread to local and regional stakeholders at the earliest opportunity. 
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1 Introduction 

Aedes Invasive Mosquito (AIM) COST Action (Project ID: CA17108), initiated in 2018, has three major 
objectives:  

• To develop pan-European networking and collaboration in monitoring and surveillance of 
invasive Aedes species 

• To increase preparedness and capacity to fight against invasive Aedes species by triggering 
optimization and innovation in surveillance and control strategies 

• To disseminate, customize and communicate the AIM-COST Action outcomes. 

This document is one of the outputs of Task 1.2: Integrating surveillance data analysis, spatial modelling 
& mapping to ensure the quality and applicability of future technical outputs at the European level . It 
therefore aims to contribute to both the first and third Action objective. Given that it involved direct 
input and feedback from the Network members it also addresses two of the Action Deliverables, namely 
Deliverable 3: Synthesised feedback with recommendation for customising surveillance, control and 
modelling guidelines; and Deliverable 4: Guidelines for customisation of mapped outputs.  

In order to understand the impact invasive mosquitoes (and the pathogens they carry) have in terms of 
disease risk or nuisance, and to facilitate control and mitigation in the event of a new introduction we need 
to know where they do or might occur. This means we first of all have to sample and map where they are, 
especially when they first appear, and if they are already widespread, then they need to be sampled and 
mapped throughout as much of their range as possible. Likely changes in distribution caused by climate 
change means we should keep updating these maps. 

Figure 1: Road Map Overview 
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As sampling, by definition, leaves gaps between the samples in our maps, we also have to find ways to fill the 
gaps. Providing there is enough sample data to calibrate them, this can be done by using modelling 
techniques and by calculating habitat suitability based on environmental limits. By filling the gaps, the models 
give detailed distributions, and so are useful to identify likely areas to which the vectors can spread and 
establish, as well as when and for how long they are active during the year. 

This document is intended as a general high-level overview of the entire chain from mosquito sampling 
through to modelling and mapping, and of the visualisation of the outputs. The overview, summarised 
in Figure 1, is not therefore an exhaustive guide on how to conduct each step, but rather an extended 
aide memoire containing recommendations for best practice aimed at a wide range of non-specialist 
stakeholders and professionals. It does not cover specific control methods nor address training needs. 
Throughout it is assumed that data are collected and processed to be part of an integrated chain of 
components – e.g. field sampling results will be, by default, mapped and modelled, rather than simply 
collected in isolation.   

2 Sampling, data exploration and preparation 

Any modelling and mapping work should start by precisely defining the objectives in the light of the spatial 
and temporal detail required, and what data already exist or can be collected from the literature or from 
fieldwork.  

Before we can start any field work, we still need to determine a sampling strategy. Two elements may 
matter: the practicalities of sampling (for planning, it may be important to consider accessibility, 
whether dictated by road access or private land restricting access); and what you will consider affects 
representativity of your sample: how many locations should we sample and where should they be placed? 
You should make sure that the sampling provides the right data for the type of analysis you are intended to 
conduct. The more locations you sample, the more confident you can be that the findings from the samples 
truly reflect the situation for the whole region under investigation. However, the larger your sample size is, 
the more labour intensive, costly and time consuming your project will be. Finding a good balance between 
collecting enough samples to draw robust conclusions and optimising time, labour and cost effectiveness is 
sometimes hard to achieve.  

There are several different sampling methods available, but the two main ones are longitudinal sampling 
(sampling the same points several times) and cross-sectional sampling (always sample different points). A 
more detailed description of sampling strategies can be found in the Appendix Section 7.1. 

A key constraint is to ensure that any sampling is repeatable, and is sufficiently standardised to produce 
results that are comparable between different locations and times. Details of some of the factors involved in 
identifying sample locations are provided in Appendix Section 7.1.2. One of the important initiatives within 
AIM-COST has been to harmonize the sampling activities and protocols used by European entomologists. This 
was developed as the AIMSURV initiative (Miranda et al., 2022) which implemented a sampling programme 
involving standardised sampling activities across Europe, and also, subsequent data sharing and publication 
processes.  

To account for differences in resources available to field teams, a set of minimum and a set of more resource 
intensive recommended sampling protocols were developed so that teams with fewer resources could still 

• Sampling should be in line with the analysis and objectives 

• Distinction between cross-sectional and longitudinal sampling  

• Cross-sectional sampling is more appropriate for spatial modelling 

• Longitudinal sampling is more appropriate for mathematical modelling 

• All collected data will need to be curated and cleaned in line with the analysis and objectives 

• AIM-COST provided a standardised sampling protocol via the AIMSURV initiative  
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contribute to a standardised sampling across Europe (see details in Appendix Section 7.1.3). More details on 
the different field surveillance methodologies for sampling different Aedes life stages, frequency and 
minimum length of sampling period, and data reporting can be found in the publication. 

2.1 Basic data cleaning and curation 

Exploratory data analysis (EDA), provides a basic understanding of the data available. How good (that is, 
informative for answering the question we are looking at) or bad are the data? What needs to be cleaned? 
What data are available and what are missing? Are the data categorical, numeric, or something else? Are 
there any data points that are outside the main body of the dataset (“outliers”) or are clearly anomalous in 
relation to the data nearby?. Much of this information can be obtained by simple examination of the data 
tables, or by visualising the data as maps, and is needed before the datasets can be cleaned to remove errors. 
Once cleaned, further preparation for the analysis and modelling steps can be made. 

Data pre-processing can be very time consuming and there is no universal way to go about this. If you are 
combining different data sources you will need to do some data normalisation and standardisation to make 
sure the different sources are compatible and, for example, are correctly georeferenced, cover the same 
area, use the same units and are collected using compatible sampling methods. The more the data sampling 
and collection is standardised, the less cleaning is likely to be needed.  

One thing you will almost always need to consider is data imbalances. If for example you have 1000 samples 
in one class and only 10 in another, it will create an imbalance in your dataset and it can bias your maps and 
skew your model. In cases like this, you may want to consider reducing the number of data points in the most 
common classes to produce a less biased sample. These techniques can also be very useful if your data are 
clustered in overlapping groups, which can also bias your analyses (Hendrickx et al., 2021). 

2.2 Occurrence data 

Depending on the sampling methods, the two main types of occurrence data produced by field surveillance 
or extracted from published literature are presence/absence and abundance data (e.g. counts per trap). 
Presence/absence data tend to be more robust and more widely modelled than abundance data as the 
accurate counts needed to provide abundance data for modelling require clearly defined and standardised 
sampling effort (e.g. trap type, trap set-up etc.) to ensure counts are comparable between different times 
and locations.  

2.2.1 Absence data 

As its name implies, presence and absence modelling requires both presence and absence records as 
training data. So, it is essential that absence data are recorded in the field.  However, absence records 
are often not routinely recorded by field sampling, or if they are, they are frequently not reported in 
survey reports and publications. It is therefore sometimes necessary to create absence records without 
using field sampling. This can be achieved using different methods (Barbet-Massin et al., 2012).  

The easiest method is to use simple geographical distance from known presences, whereby “pseudo-
absences” are added in areas between a minimum and maximum distance from any presence location. 
This method assumes that there are no presences beyond the sampled range and so can be misleading, 
and the results should be used with care. A better method is to use some kind of logic-based definition 
of habitat suitability which identifies unsuitable areas based on known environmental limits (Figure 3) 
or identifies areas environmentally dissimilar to those where presences are recorded (using e.g. the 

• Exploring data will help with interpretations later on. 

• The type of data preparation is determined by the type of modelling 

• Data cleaning can be a significant time sink 
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Mahalanobis distance) (Iturbide et al., 2015). Absences can then be assigned to the ‘unsuitable’ areas 
with some confidence.  

Figure 2: Example of data used to generate Absences 

 

2.3 Passive surveillance 

Sampling methods introduced above belong to the active surveillance category, which involves sampling 

by trapping. Complementary to trapping are passive approaches, which mobilize citizens, enthusiasts, 

students - any volunteer - to report a relevant sighting. Public engagement in surveillance and control 

comes naturally with passive surveillance through the establishment of communication channels 

between experts, decision makers, and the public. Citizen reports can be used to inform active sampling 

especially for invasive species, which rapidly spread and appear in unexpected distances. The approach 

has proven successful in surveying vector fauna, determining the extent of invasion by alien species, 

and assisting in the early recognition of changes that may have an impact on biting habits and the risk 

of pathogen transmission (Bartumeus et al., 2018; Kampen et al., 2015). 

Passive surveillance has the advantage of generating data continuously. However, reliable data 

collection rests heavily on citizen engagement, which declines in time and correlates with geographic 

and socio-economic factors. Citizen activity must be maintained through communication and by 

providing feedback. Nevertheless, sampling bias is inevitable and must be addressed before attempting 

spatial or mathematical modelling. Palmer et al. (2017) presents a successful approach involving 

modelling user behaviour, and thus, removing the sampling bias (Palmer et al., 2017). Scalability of this 

approach, best practices of designing citizen science surveillance programmes, and standardizing the 

entire process are hot topics of study.  

Citizen science data collection is included in the AIMSURV initiative and is recommended for integration 

into routine surveillance programmes for early detection and determination of spread for Aedes 

invasive mosquitoes (Južnič-Zonta et al, 2023). 

2.4 Data reporting  

As mentioned before, AIM-COST has aimed to provide a standardised framework so data (and outputs) 
can be shared and compared at a local, regional, and international level. In order to make sample reports 
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comparable from study to study, recorded numbers need to be standardised according to sampling 
effort, and the samples need to be adequately geo-referenced and time stamped. Importantly, it is 
increasingly accepted that zeros and absence records are just as important as presences or sample 
numbers 

Many studies that attempt to assess species distributions – either presence or abundance - do so by 
extracting data from published reports and papers. This extracted information needs to be adequately 
georeferenced and standardised if it is to be comparable between studies and sample programmes.  
This is particularly true if the extracted information is abundance which requires a number per standard 
measure of sampling effort (such as number per square metre or number per trap per day) to be 
applicable across many studies and locations.  

It is therefore important to ensure that the data are reported in a way that provides all the information 
that readers might need for downstream analysis. The minimum requirements for reporting can be 
summarised as follows: trap type/sample methods, number of traps/sample events, start and end 
collection dates, trap/sample geographical coordinates and location descriptors, number of specimens 
caught by species (including zeros), method of species identification. Details are provided in the 
Appendix Section 7.2. 

3 Modelling 

A number of issues should be considered before any model is run – in particular the extent of the area 
to be modelled, the scale of the data, what level of detail (“resolution”) is required for the outputs.  
Note that these are issues of relating to the data inputs available and what needs to be modelled.  Scale 
and resolution also affect the visualisation of the data, and are also therefore discussed in those 
contexts in Section 4, below. 

3.1 Scale and Resolution 

We all have an intuitive understanding of scale but it is worth formalising our understanding to 
distinguish between data scale discussed here, and map scale discussed later in this document. In the 
broadest sense, geographers define scale as including both extent (how much of the Earth’s surface is 
covered) and resolution (in how much detail, what is the smallest element represent on the map) (Figure 
3). Though we focus here on the spatial scale, the same principles can also be applied to temporal 
scale. 

▪ A number of factors need to be considered before modelling is done: 
▪  Scale and resolution  
▪  Covariates 

▪ Both have significant influence on the results 

• Two major types of modelling are: Spatial modelling for distributions; and 
Mathematical modelling for dynamics 

▪ Both input data available and aim will determine what type of modelling is 
possible and appropriate 

▪ Mathematical modelling is more appropriate for dynamics 

▪ Spatial modelling is more appropriate for distribution 
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Figure 3: Different scales and resolutions 

3.1.1 Data scale 

It is worth establishing that data themselves have a scale, and that how these differ between vector maps 
(point or polygons) and raster images built from pixels. The well-known map in Figure 4 covers the full extent 
of Europe and its neighbouring countries, and with an intermediate resolution based on administrative units. 
Though convention would usually require a scale, this map has no need of one because it is self-explanatory 
(everyone can “size” the European continent and its provinces, and this map is not going to be used to assess 
distance. It is worth noting that using administrative units may however conceal how spatially complete 
the observations are: e.g. mapping mosquito presence in the whole of Belgium could be based on 
trapping in Antwerp only. 

Figure 4: VectorNet AIM map 

Source: https://www.ecdc.europa.eu/en/disease-vectors/surveillance-

and- disease-data/mosquito-maps 

In the case of pixel-based data, resolution is given by the pixel size. The spatial resolution of the 
covariate data, usually used as raster/pixel-based data, will determine the resolution of the model 
output. Care should be taken to ensure that the resolution of the covariate data is appropriate for the 
input training data (Chauvier et al., 2022). Other aspects of resolutions are discussed in the data 
visualisation section. 

3.1.1 Data aggregation 

Sometimes the data available for mapping or modelling are very unevenly distributed, perhaps because 
they are collected from a wide range of different surveillance programmes or from samples taken at 
different times. This can lead to data clusters where several data values are very close together or even 

http://www.ecdc.europa.eu/en/disease-vectors/surveillance-and-
http://www.ecdc.europa.eu/en/disease-vectors/surveillance-and-
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overlapping, whilst in other places, they are widely dispersed. In these cases, it is often useful to 
aggregate the data as samples repeated over time may provide different values because of the 
difference in trapping conditions like the weather. An example of this process would be to take all 
sample records within a 10 or 20 sq. km. grid cell and take the maximum recorded number during the 
year.  Further aspects of spatial aggregation for mapping are discussed in Section 4.4.  

3.2 Covariates 

3.2.1 Covariate selection and processing 

Species distributions are determined by abiotic and biotic factors and species distribution models 
frequently use the abiotic environmental factors as predictor variables (Elith & Leathwick, 2009). 
Commonly used covariates for mosquito distribution modelling include things such as NDVI (normalized 
difference vegetation index), temperature, rainfall etc.  A list of useful covariates and links to the sources 
is provided in the Appendix Section 7.2.6. 

 

In recent years, many environmental datasets have become very extensive and complex. For example, 
temperature datasets may be available for every 500m of the globe for every day for many decades. 
This makes it difficult to choose which particular dataset should be used as a predictor, and so it is often 
necessary to use data reduction techniques to provide summary statistics. Whilst means, minima or 
maxima can be useful, there are other techniques that can also provide indices of seasonality. One such 
are bioclimatic summary variables based on temperature and rainfall data – such as temperature of the 
warmest quarter which are readily available online. A potential problem with such data is that the 
individual parameters are often correlated – vegetation is usually linked to temperature and rainfall – 
which interferes with the statistical modelling processes.  

Figure 5:The Fast Fourier Transform principle 

An alternative is to use temporal Fourier analysis (Figure 5) which provides biologically relevant 
indicators and removes the inherent correlations between different environmental parameters. These 
are however complex and time intensive calculations (Scharlemann et al., 2008) and it may be 
preferable to find out whether GIS colleagues have these datasets prepared rather than trying to 
produce them yourself. 

• Covariates are the explanatory values that are used to fill in the gaps 

• Covariate selection has an influence on the modelling result 
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3.3 Modelling Methods 

Modelling in this context can be conducted in either of two ways: Spatial modelling which is based on 
the statistical relationship between the target vector and a series of covariate drivers; and mathematical 
modelling which is based on measured relationships between the target vector and defined processes 
like growth, birth or mortality rates. Spatial modelling usually produces maps, whilst mathematical 
modelling typically provides graphs of population changes over time.  

3.3.1 Spatial modelling 

Spatial distribution modelling consists of two components: The species data, often drawn from sampling or 
extracted from the literature, and the covariates used as predictors. The modelling process first establishes 
a relationship between species data and these predictors.  The species data often consist of the 
presence or abundance of the target variable for a series of sample locations. The modelling then applies 
those relationships to all areas for which data are not known (Figure 6) (Araújo & Guisan, 2006).  

The output maps of these species distribution models are usually static maps and do not reflect temporal or 
seasonal changes. Proxies for these dynamic factors can, however, be derived from proxies like length, peak 
or start of season (Petrić et al., 2021). 

 

Figure 6:Species distribution modelling concept 

3.3.2 Modelling method selection  

There are a plethora of models to choose from (Figure 7). All these different models have advantages and 
disadvantages. Depending on your data, area of interest and covariates, some models will perform better 
than others. It is often advisable to test different models to see what works best in your particular case 
(Uusitalo et al., 2021). Statistical and machine learning models are most commonly used (Beery et al., 2021). 

Statistical models focus on inference, creating a mathematical representation of the data generation process 
to understand the behaviour of a system or test a hypothesis and to distinguish between a genuine effect 
and noise. To specify the model, identified parameters of special interest are used. Assumptions can be 
verified when enough data are available and if the model is refined enough. Statistical models take 
uncertainty into account.  

In contrast, machine learning models concentrate on finding an unobserved outcome or future behaviours, 
by using algorithms to find patterns in the data. This method is useful when dealing with ‘wide data’ where 
the number of input variables exceeds the number of subjects. Machine learning is more empirical and data-
driven which means more complex relationships can be included in the modelling. At the same time, machine 
learning does not attempt to isolate the effect of a single variable (Merow et al., 2014). 
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Figure 7:A graphical representation of different data model families 

(AI=artificial intelligences, KDD=Knowledge Discovery in Databases) 

Statistical models are the better choice if the signal/noise ratio is small, the model needs to be interpretable 
and if the sample size is smaller. These are a good choice when the effects of a variable or a small number of 
variables need to be isolated. Machine learning is also ideal when you are not interested in (directly) 
estimating uncertainty. A few examples of the most common used models include: Non-Linear 
Discriminant Analysis and Generalised Linear Model (GLMM) as examples of statistical models, while 
Random Forest and Boosted Regression Trees (BRT) are examples of machine learning models (Merow 
et al., 2014). Further details are given in the Appendix Section 7.3. 

3.3.2.1 Bootstrapping 

Spatial  modelling is a statistical process and so it is not enough to run a model just once. Uncertainty analysis 
can be conducted by running many repeats of each model to assess which areas are reliably predicted and 
which are not and would benefit from additional data. Bootstrap sampling is one of several methods normally 
used for testing the accuracy of predictive models. After the data are cleaned, you typically split your data in 
2 to 3 subsets. The largest subset will be the training sets (70–80%). This set is used to train your model. A 
second subset, the validation set (10–15%), can be optional and is used to validate and tune the model 
outputs. The last subset is the test set (10–15%) and is used to evaluate model performance. The reason for 
splitting the data is to have independent sets at each stage. If you would use the same sets of data to train 
and test the model you will get a self-fulfilling prophecy. 

A bootstrap sample is the sub-sample of a set of training data that is used to make one prediction of a species’ 
distribution. Multiple bootstrap samples are taken. A prediction is then made for each and finally, the entire 
set of predictions is combined to produce a single, average prediction. Bootstrap samples are taken from the 
training set with replacement because we assume that the training set itself is a sample of reality, and the 
occurrence of any one observation within it is essentially random. A different training set could contain that 
observation once, more than once, or not at all. One advantage of bootstrap sampling with replacement is 
that within any one model the samples can be arranged to have equal numbers of presence and absence 
observations. Recent work suggests that this situation produces model outputs with the greatest accuracy. 

3.3.2.2 Ensemble modelling 
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Bootstrapping occurs within the same model but you can leverage this and combine different model methods 
into an ensemble model that usually performs better than the individual models (although this is not always 
the case). As an example, BRT tends to over fit but GLMM tends to smooth out the infrequent, but likely, 
observations. So, a combination of both is likely to avoid these flaws. Ensemble modelling creates a more 
robust model result, but at the trade-off of increased complexity and calculating time (Hao et al., 2020). 

3.3.1 Mathematical models 

Mathematical models are idealised representations of biological and ecological systems formulated into 
a set of equations. In contrast to spatial modelling, mathematical modelling is process based, or 
mechanistic. While spatial modelling relies on statistical relationships of predictors with species’ 
presence or abundance, mathematical models rely on measured or experimentally determined 
relationships with developmental or population processes as are so much more complex to construct.  

For mathematical models, the essential components of a system are specified in a formal framework 
and interactions among these components and links to internal or external drivers are defined without 
ambiguity. For example, temperature-dependent adult Anopheles gambiae mortality can be modelled 
with a polynomial equation, aT 2 + bT + c (Lunde, Bayoh, et al., 2013). The symbols a, b, and c represent 
parameters, values of which are justified by laboratory experiments or field observations. The modeller 
then employs analytical and numerical methods, rooted in well-defined mathematical theories, to 
investigate the system in silico. 

Good models do not always need extensive detail, but merely to offer useful insights into the system. 
The level of detail and the extent of interactions formulated in a model depend heavily on its purpose. 
Mathematical models of vector populations and vector-borne disease transmission can be developed 
to address, among others, population response to changing environmental conditions, the 
environmental and climatic drivers of a species, and the impact of control interventions. 

For instance, the malaria transmission model of Ross and Macdonald, with only two components (the 
prevalence of malaria and the rate of humans acquiring infections), shows that a reasonable reduction 
of mosquito population below a threshold is sufficient to interrupt transmission cycle (D. L. Smith et al., 
2012). 

 

3.3.1.1 Model calibration and identifiability 

• Mathematical models represent biological and ecological systems as 

a set of equations. 

• Model calibration is performed using longitudinal observations 

collected regularly at the same location over an extended time 

period. 

• Combining complementary datasets, such as meteorological data and 
experimentally derived physiology, is informative, when compatibility and 
applicability are ensured. 

• Multiple data sources, including experimental and field data, are needed to 

develop mathematical models. Often, such data do not exist or are not 

publicly available. 

• There is a need of a standard language of model definition to 

improve accessibility and reproducibility. 

• Demand for computational resources increase as models become 

more complex and data accumulate. 
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Although a mathematical model needs to be well-defined, the natural biological or ecological process it 
represents can be complex and largely unknown. A model is inevitably a coarse approximation 
compared to the endless complexity of the actual system. The process of model construction, re-
structuring knowledge into a set of well-defined abstract formulas, helps to critically evaluate 
observations and identify gaps in knowledge. In addition to the limitations of in silico representation, 
several factors may contribute to uncertainties in model output and deviations from observations. 
These include measurement error, chance (expected randomness of a natural process), and errors in 
defining relationships (parameter identifiability).  

Measurement error is quite common in life and environmental sciences, and is minimised through 
training and practice. Random or chance variation in natural processes is addressed though stochastic 
models (see Appendix Section 7.4). These account for the expected variation in, for instance, 
development times and survival, and generate a slightly different number of adults emerging at a slightly 
different time in each model simulation. Overall, stochastic models better represent the range of 
outcomes of laboratory experiments or field observations. 

Limited parameter identifiability is the hardest to deal with, as it may require extensive data collection and 
expert validation. The parameters of a model, e.g., a, b, and c in the equation of adult Anopheles gambiae 
mortality, may be derived from laboratory experiments in controlled conditions, though the results are 
difficult to translate to field conditions which are often more spatially and temporally variable.  

Most state-of-the-art gridded meteorological datasets used to apply the models are available at 
resolutions measured in kilometres so are often difficult to reconcile with micro environments the 
vector actually inhabits. Data loggers may be used to obtain measurements at collection sites but 
mobility of adult mosquitoes may enable them use significantly different micro-environments than the 
ones around the measurement sites. 

Certain model parameters may be unavailable or difficult to identify by laboratory experiments. 
Examples include (i) the average volume of breeding pools, (ii) extent of population reduction following 
the administering of vector control, and (iii) mosquito biting rate. Such cases pose an inverse problem 
where a subset of parameters, or the entire parameter set, is adjusted to make the  model output match 
observations (Erguler & Stumpf, 2011; González et al., 2016; Koons et al., 2017). Any observation that can 
be compared with a particular model output can be used for calibration, such as (i) number of eggs in 
an ovitrap, (ii) number of adults caught in an adult trap, and (iii) number of bites reported by a person. 

Longitudinal data are the preferred means of calibrating a mathematical model. Such data comprise 
field observations performed regularly at the same location for, ideally, more than one season with the 
same protocol. By doing so, potential impact of an environmental variable, current or historical, on the 
dynamics of a population can be captured.  The frequency of collections and the number of collection 
sites are planned to ensure capturing transient changes and resolving the differences in neighbourhoods 
and land types. Collection of longitudinal data is expensive as it requires designing sampling strategies 
to sufficiently sample from a single population. It is advisable when performing field observations to (i) 
combine different life stages, (ii) collect from various environmental backgrounds, (iii) extend data 
collection beyond the anticipated time frame of an active season, and (iv) aggregate observations in 
multiple, ideally subsequent, years (Erguler et al., 2019). 

3.3.1.2 Risk mapping 

Mathematical models may represent spatial and temporal dynamics of vector populations including adult 
activity and abundance, duration of the peak season, and first emergence of adults. They may be used to 
anticipate disease transmission by explicitly representing vector-host interactions and mobility. One can 
perform risk assessment by exploiting predicted abundance, biting activity, force of infection, and the 
expected number of disease cases. Such indicators can be summarised into future projections, for the 
dynamics, and maps, for the geospatial distribution, of risk. Climate- and environment-driven mathematical 
models have been developed to represent local vector populations and perform risk assessment mainly at 
the scale of cities (Annelise Tran et al., 2019; Guzzetta et al., 2016; Tran et al., 2013). Extending applicability 
towards larger scales requires incorporating variable environmental factors and breeding site dynamics into 
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population dynamics models. In addition, compatibility of laboratory-derived physiological parameters in the 
context of large-scale land and climate conditions also needs to be ensured. Recently, Erguler et al. proposed 
re-calibrating all parameters (including laboratory-derived dependencies obtained at fixed micro-climate 
conditions) with respect to field observations as a means to develop large-scale models (Erguler et al., 2016, 
2017). Nevertheless, there is a large room for improvement concerning accuracy and applicability as more 
data accumulate and better methods are developed. 

3.3.2 Modelling tools 

Several tools and software are available to conduct the types of work and analysis discussed in this 
document. These tools range from scripting to full-fledged software packages. 

VECMAP is a full-fledged software package that offer the full chain of sampling to species distribution 
modelling with a Graphical User Interface (GUI) for those that do not want to deal with scripting. If you 
don’t mind scripting then R is a good option. The R scripting package offers several libraries for species 
distribution modelling, such as the caret and biomod2 packages, and mathematical modelling, such as 
the pop, stagePop, albopictus, and dynamAedes packages. It is convenient as you can also do all your data 
preparations and covariate creating in R as well. There are also other software packages that are capable 
of doing part of the processing like image manipulation (IDRISI) or general GIS aspects and spatial data 
visualisation (QGIS). 

In contrast to the situation with spatial models, many of the published mathematical models do not describe 
how to run them and very few provide the code used, or have been developed into software tools (Ryan et 
al., 2022). Code availability is essential to ensure reproducibility of the entire model development process 
and should be accompanied by the exact model framework, parameters used, and any tricks the authors 
used while transferring the model into code (such details may not be included in model description). To 
ensure this, a common unified all-encompassing formal language of model definition is needed. The Systems 
Biology Markup Language (SBML (Hucka et al., 2019)) commonly used for biological modelling could be given 
as a template, and could be accompanied by a comprehensive curated model repository similar to the 
BioModels Database (Li et al., 2010) to promote visibility, facilitate adoption, and encourage validation by 
fellow experts. 

4 Data visualization and mapping 

 

There are many reasons to produce a map as they are very efficient ways of rapidly displaying complex 
information about a single parameter. Many analysts use them to validate data entry and to locate 
outliers or anomalous values which may represent errors. They are most used however as ways to 

• Maps are communication devices and need to be elaborated considering what 

the purpose is: what is the message or information we are trying to bring 

across?  

• Common sense is very useful for elaborating maps, but cartography rules and 

practices also help avoiding confusing the message or misleading – even 

inadvertently – the reader  

• How the map will be diffused (on paper or online) offers various options and 

what works in one context may not be ideal in another 

• All maps are a simplification of reality, that may also include a spatial bias. 

Generalisation is necessary for conveying a clear message, but sometimes 

comes at a price.  
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convey information to a wide range of technical and lay audiences. As for text or graphs, how maps are 
presented will affect how understandable and useful it will turn out to be. This section covers some 
basic principles that are useful for using maps to communicate, plan and make decisions, and then 
describes some situations typical for entomologists. Everything presented here is software-independent 
and the information presented is meant to be of use whether you produce maps yourself or not. 

Like any document stemming from scientific information, maps are generally meant to communicate a 
message, but as a summary to facilitate discussion and decisions or disseminate information. While a 
map can be as basic as visualising data for organising a field collection campaign or to explore data, the 
purpose will always be to try to allow interpretation:  the data (such as mosquito numbers at a set of  
locations) are the measures you can compile in a table, and the interpretation such as risk assessment 
or a control strategy will be the conclusions drawn.  

More specifically, we could map presence/absence in November, or date of peak abundance, or any 
other element. This nuance matters because when making the maps we must be aware of the 
information, the message we are trying to convey. They all potentially lead to different information 
being conveyed by the map.  What we need to keep in mind: there is no single way of mapping: the 
cartographer bears the responsibility of presenting something that allows the reader to draw relevant 
conclusions.  

The following sections consider the main topics for which tried and trusted conventions exist that help 
present the data, convey information and help the reader to grasp the message that the mapper 
intended. We only cover broad topics here, so some additional resources are list in the Appendix.  

4.1 Map projection, scale and generalisation 

The Earth is (roughly) spherical, and paper or digital maps are flat. Any flat map therefore distorts the 
actual distance in one or both directions. To try to minimise such distortions maps can be drawn using 
different ‘projections', where each projection represents the distance on the ground differently on a 
map. This is a very complex field, and there are thousands of projections, each defined to minimise 
distortions in particular situations (countries, small or large areas etc). Each looks different on the page 
(see Appendix Figure 22) and so maps can only be combined if they have the same projection. It is 
therefore essential to know which projection a map uses. Further details are given in Appendix Section 
7.6.1. 

Figure 8: Effect of scale (Source: Eurostat country maps) 

Data scale was covered previously in this document. The map scale results from the combination of the 
scales of the data presented and the mapping choices. Sometimes scales are shown as a fraction, which 
remains a useful notion because it relates coarsely to levels of detail. However, because we now view 
such documents most often on a digital screen, the fraction is either no longer useful and replaced by a 
linear scale, or needs to change as we scroll and zoom in and out, as we can see on platforms such as 
Google maps. Figure 8 provides two examples of scale effects: Corsica and Sardinia look very different 
in these two maps where one is at a scale of 1/1000000 (green) and the other at 1/60000000 (purple). 
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Both are the Eurostat world country map and when zoomed out to the whole continent the latter scale 
is sufficient. 

In relation to scale, we must recognize that maps always are and should be a simplified representation 
of reality. What data should then be shown to convey the intended message, and what data can be 
omitted? Distracting, irrelevant, or unreadable elements have no place on a map, so if we map Europe, 
for example, we do not need to include in the map the thousands of minuscule, uninhabited islands off 
the coast of Sweden. Remember it is important to be consistent and to harmonise by using the same 
amount of detail across a map. 

4.2 Spatial bias and representativeness 

One element that is not explicitly covered in scale but that may matter very much is whether the 
information presented is equally representative for an entire map: for example our dataset may be 
focused on residential areas and therefore ignores less built-up areas. This is what sampling strategies 
discussed in Section 2 aim to cover. Also, how were residences and neighbourhood selected? The 
sampling strategy description should make such details explicit. In the case of citizen science 
contributions (e.g. Figure 9) which are less controlled than formal sampling programmes, the potential 
for spatial bias is much more difficult to grasp and difficult to account for. People’s concern for the 
matter or interest for science may strongly affect the pattern of observation, so it is uncertain whether 
Figure 9  provides and exhaustive view of Ae. albopictus distribution in Europe. 

Figure 9: All reported observations of Aedes albopictus on iNaturalist. 

Source:https://www.inaturalist.org/observations?place_id=any&subview=map&
taxon_id=62984 

4.3 Variable types 

Data types that can be mapped include:  

• Qualitative: nominal or categorical (e.g. urban, pasture, field, forest); ordinal (e.g. low density, 
medium density, high density) 

• Quantitative: stock or absolute (you can sum values); ratio (the sums do not make sense). 

The spatial data (e.g. trapping locations) have associated numerical or categorical attributes which may 
include their geographical coordinates, dates of trapping, trap type, person trapping, number of mosquitoes 
collected. Any parameter (like model outputs) can be an attribute as long as they are linked to the spatial 
entity by identifiers or geographical coordinates. 

Many published maps include a default background proposed by GIS software – such as topography or roads 
and settlements. Very often this information is either too detailed and obscures the main data displays or 



AIMCOST: From sampling to models and maps.  Marsboom et al, 2023.  MAIN DOCUMENT 

15 
 

represents irrelevant information that has nothing to do with the data in the map. Use these default layers 
with care.  

4.4 Aggregation 

In the preceding sections we have discussed various reasons to aggregate data such as improving statistical 
clarity, to improving visibility, or to maintain confidentiality (see below). Two sorts of aggregation are widely 
used –  spatial and attribute aggregation.   

For spatial aggregation the idea is to summarize the spatial displays into coarser units - such as a series 
of point records of population number into population totals for a municipality or province. 
Administrative units are a common unit of aggregation which have the advantage of being widely recognised 
on a map as well as summarising mapping results in terms of operational structures for decision-making. 
Here the main caveats pertain to the potential variation that various aggregation options will produce 
on a same dataset as is shown in Figure 10 below. There are risks involved in such manipulations – an 
example being “gerrymandering” in which electoral district boundaries are adjusted in relation to likely 
voter intentions to bias and election result.  

Figure 10:Spatial aggregation 

Attributes themselves can also be aggregated by for example grouping categories. The nested legend of 
Europe’s CORINE land cover map is such an example: the separate coniferous, broad-leaved and mixed 
forest categories can be aggregated to an overall category of “Forests and semi-natural areas”. 
Continuous variables can also be ‘binned’ in various ways using category threshold intervals such as 
quartiles, equal intervals or manually defined boundaries each of which will result in different class 
memberships and so different outcome maps. 

4.5 Map types and content 

Depending on the attribute (variable) mapped and the objective of the map, various tools can be used. 
In broad terms, variables representing stocks (absolute numbers, e.g. total population, number of 
schools, number of disease cases…) are mapped using symbols of varying size. For ratios (proportions, 
e.g. population densities, schools per inhabitant, disease incidence rate…) choropleth maps are more 
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appropriate. These are maps in which an entire area, typically an administrative unit, is given a colour. 
Stocks mapped as choropleths is possibly the most widespread mistake made in cartography (see more 
details and an example in the Appendix Section 7.5). 

Once the map type has been selected, many options exist for dressing the map: the use of colour and 
texture can help (or hinder!) readability of the message. A summary of the options for graphic semiology 
(as cartographers call their palette) is found in Appendix section 7.5. A clear title, legend, and graphic 
scale will all contribute to convey the message clearly and convincingly.  

4.5.1 Mapping for typical situations 

A few typical scenarios in which a map may be deemed helpful include: planning fieldwork for 
surveillance, planning monitoring for interventions or management of decision making. To take the first 
example – there are a number of questions that need to be answered before the field work can go 
ahead – these include what variable to measure, and what spatial and temporal scale to adopt in the 
sampling – these have been discussed earlier in the document. Once these have been addressed, a 
number of scenarios may present themselves to be mapped, such as: Where has been surveyed? and 
How do the results compare with others?.  

4.5.1.1 Where has been surveyed  

In these cases, simply mapping sampling locations may be enough. The spatial scale needs to display the 
area or interest: city, province, country. In the latter case, when the scale is broader, aggregating some of 
the points to more generalised locations (e.g. displaying sampled cities rather than individual sampling points 
within cities) may help clarity. It is important to decide what maps to use as a background to this information- 
some alternatives are road network, administrative boundaries, or land use type – as the background should 
be relevant to the sampling strategy but also not be too cluttered. 

If you intend to cover neighbourhoods of various socio-economic levels, mapping your sampling over e.g. 
census based mean income data could be useful. If you are more concerned about building transects of 
increasing distance from the potential source points (e.g. a harbour or logistics centre), then showing 
those elements on the map will be the primary objective. 

Figure 11: Sample location maps 

Figure 11 provides a detailed example: Map A (left): Three zones are delineated to prioritise the surveillance of container-breeding 
mosquitoes: blue = very important (inner circles, up to 500m), orange = important (centre circles, up to 1000m), orange red = less 
important (outside circles, up to 1500m). Green areas = forests; cyan dots = all urban sites/units within the target municipality that 
could be sampled; yellow triangles = rural sites/units. Map B (right): Some urban sites were randomly selected (dark and light purple 
dots for municipality X, orange dots for municipality Y); most of the sites were sampled (light purple and orange dots); traps were 
placed in forested sites (green dots) and along rivers (blue dots). 

4.5.1.2 How do our results compare with other results? 
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Multiple indicators are always challenging. The map should not be overcrowded and the data from each 
set of results should be comparable (was the same collection method used?). If the data are comparable 
then showing the difference or the trend could be useful, depending on what the key message is.  

This scenario raises an important question, valid elsewhere as well: is a map the answer? A map is only 
necessary or useful if we consider that spatial heterogeneity matters. If one trap or model, or the 
aggregated (or maximum value across places) observation or prediction provides the information 
needed, then a map is unnecessary and a graph following the progress of values may be more useful. In 
this context, comparisons often involve the use of confidence intervals to validate whether differences 
are real. Confidence intervals are difficult to represent on the same map as the source values, and so are 
rarely mapped but efforts are increasingly being made to find ways to integrate them when they matter. 
It may involve adding two supplementary maps that show the low and high thresholds for the chosen 
confidence interval, or greying out areas that fall outside the confidence interval.  

4.5.2 Communication 

Whatever the audience, you must first identify the message you want your map to convey, and then  how 
the map can help you get that message across. The map needs to do that by itself, i.e. be clear and easy 
to read. You will need to remember most of your readers are unfamiliar with the data and in some 
instances, may be unfamiliar with the issue.  

Figure 12 shows an example of communication by the French Ministry of Health to the general public. It 
shows which “Départements” are known to have established Aedes albopictus populations.  

Figure 12: Tiger mosquito map, French Ministry of Health 

Source: https://solidarites-sante.gouv.fr/sante-et-environnement/risques- 
microbiologiques-physiques-et-chimiques/especes-nuisibles-et-
parasites/article/cartes-de- presence-du-moustique-tigre-aedes-albopictus-en-
france-metropolitaine 

There are a number of comments we can make about this map:  

• It focuses on the “metropole” (so does not include any Overseas Territories). 

• The legend has one item: Aedes albopictus is established in a given department. 

• It has a map inset on the left, giving more detail on the region of Ile-de-France (Paris and 
suburbs) 

• It has no detail inside the Départements. 



AIMCOST: From sampling to models and maps.  Marsboom et al, 2023.  MAIN DOCUMENT 

18 
 

• It has no distance bar or north arrow so it is assumed that  any  reader is familiar enough with 
metropolitan France to do without. 

This map therefore fails to provide some details that are formally necessary, but largely succeeds in 
conveying a simple message: the Tiger mosquito is now found in numerous areas (67 out of 96 
Départements). It leaves out the detail of precise location where it was observed, thus leaving aside 
issues concerning sampling effort, population density, recent introductions and spread. It also does not 
map the other departments as “absence” thus implying that the situation can evolve and/or that the 
mosquito may spread.  

4.5.1 A word on confidentiality 

When data are mapped, the risk of a breach in confidentiality increases substantially. This is an obvious 
concern for health-related data, but there may be other reasons to “blur” the exact position of a mapped 
element, so as not to reveal the exact location  of sightings for very rare species, or to protect equipment 
from theft or vandalism. The use of a big symbol is insufficient as the location to which it is fixed can be easily 
deduced. To overcome this, some software packages are able to “jitter” positions. Removing identifying 
elements may help. Aggregating data (e.g. mapping admin units rather than points) is also a good option.  

5 Integration and implementation 

Whilst the previous sections provide an aide memoire of activities needed for effective surveillance, mapping 
and modelling of invasive mosquitoes, they do not suggest when to implement these activities in a real-life 
context.  To identify these implementation steps, breakout discussions were held at the final  AIMCOST 
network meeting in Rome,  February 2023, to define what  activities are  needed when an invasive mosquito 
is first detected in a region.  The recent detection of Aedes aegypti in Europe is used to provide an example. 
The list of activities described below have been distilled from the group discussions about the integration 
and implementation of surveillance field activities and use of modelling and outputs such as maps to 
improve sampling design and communication.  

A number of component activities were defined  and are expanded in subsequent paragraphs:  

• Establish situation: Confirm true presence/absence of the vector in the region of first detection, and 
define sampling strategy needed to provide that information, including defining where to put traps 
using existing vector models or habitat suitability if available 

• Use modelling to predict likely direction and extent of spread, using the predictions to define wider 
scale surveillance to monitor spread; to validate model in field   

• Communication:  To provide maps of sampling results and distribution models to stakeholders   

a) Establish true presence/absence, and define sampling needed to acquire that information;  

After the initial detection of Ae. aegypti in a particular area, the first recommended step is to confirm the 
presence and spread of Ae. aegypti around the point of detection, i.e. to establish whether the record 
represents a true presence, and over what area the vector is present.  This is more  likely to be achieved by 
sampling of the immediate area rather than modelling (Lana et. al. 2018), unless local distribution models 
are already available (se also below). 

Sampling effort needed to determine a true “presence” or “absence” (i.e. The number and locations of either 
oviposition or adult traps, needed to determine a true “presence” or “absence”) requires specialist 
entomological knowledge to define and would depend on the likely mosquito abundance, conditions during 
the period of sampling, and the specificity and sensitivity of the sampling methods,.   

I. Abundance and extent of introduced population: This factor is usually unknown, as 

depending on the season of introduction, breeding can take place rapidly, leading to an 

increasing population from the moment of entry. Single detection at PoE (i.e., airports) are 
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possible by using different techniques described above, such as direct observations/ 

capture and relative sampling methods (traps) (Ibáñez-Justicia et al., 2017). In addition, 

some assumptions about the area of spread can be made, for example according to ECDC 

guidelines (2012), it could be assumed that  “the population remains restricted to a small 

area with an indicative maximum area of 25 km²" 

II. Weather conditions during the sampling period: The impact of abiotic factors like climate 

(e.g. temperature) on vector distributions can be used to refine appropriate surveillance 

strategies that focus on environmentally suitable areas. Early detection of mosquito activity 

then occurs when environmental conditions favour adult activity (flight, feeding, 

oviposition). Mathematical models using environmental profiles in each area may also be 

used to help to predict periods and levels of adult activity which may then be validated 

against existing data (Lana et al., 2014) and used to dictate surveillance strategies (Pulecio-

Montoya et al., 2021)   

III. Sensitivity and specificity of the sampling methods The sampling methods must be 

tailored for the target species.   For example, those widely used for for Aedes (e.g. ovitraps 

and adult traps, use of  Lactic Acid rather than CO2 in targeted attractants ) are rather 

specific and are generally ineffective for Culicine mosquitoes.. In addition, if several AIM 

species are thought to be in the same area, the sampling used methods should  be less 

specific. Direct sampling of breeding sites is also recommended, as it provides a high 

sensitivity and specificity. 
 

As well as these, other factors, such as feasibility and economic viability must be taken into account 

. The ECDC guidelines (2012) provide indications about the sampling effort in different scenarios, 

including the surveillance of introductions at Points of Entry. In this case, a density between 1/ 

2500m2 and 1/ 5000m2 is recommended. As a part of the implementation and integration, the 

sampling effort needed and the seasonal activity can be estimated with the aid of mathematical 

models than can identify likely periods and areas of peak activity (Lana et al., 2018).  

 

The biology of the targeted species in relation to environmental constraints can be used to develop 

habitat suitability models, which will identify areas most likely to support the vector, and so dictate 

optimal locations for sampling. Maps presenting modelling outputs of habitat suitability can be 

usefully supplemented by maps showing access, transports and other factors that might affect the 

feasibility of setting traps. An example from the south of Belgium to sample the extent of a Aedes 

japonicus establishment and to coordinate its control efforts is shown below.  
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Figure 13: Worldcover maps of the area around a positive sample for Ae. japonicus 

 

 

An example from the south of Belgium to sample the extent of a Aedes japonicus establishment and to 

coordinate its control efforts is shown above (Figure 13). From previous PoE monitoring, a positive PoE was 

found. As Ae. japonicus is a tree hole breeder, a land cover analysis of the surrounding area was conducted 

to identify suitable areas for breeding, and a forested area behind the PoE was identified and selected for 

surveillanceError! Reference source not found.. Both larval site sampling and ovitraps were used as they w

ere deemed the most appropriate based on the location and biology of the species. This method proved to 

be effective in tracking vector invasion within the forest.  

A second example from invasive mosquito monitoring in Belgium shows all positive and negative traps, 

their nature , provincial boundaries and major roads and shows clearly where the mosquitoes have been 

detected and where they were not (Figure 14).  Note that the negative points are essential to provide a 

complete overview of the likely distribution 
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Figure 14:  Mapped output of initial invasive mosquito surveillance, Belgium 

 

The results of these surveillance efforts need to be mapped to provide stakeholders with the outputs as 

soon as possible. They will help grasp the general situation, give a first assessment of potential control 

challenges, and help generate hypotheses for the source of introduction. Such maps will be of primary use 

for entomologists so they can summarise the situation for decision makers. The scale and extents of 

sampling should initially be local to the reported site of introduction, and the production of more extensive 

models can then be considered  in order to predict likely spread and establishment. 

b) Modelling to predict direction and distance of spread and to target surveillance  

Though modelling  plays a relatively minor role in the initial assessments of true presence or absence 

following a recorded introduction, they are an effective way of predicting spread from the point of 

introduction.  Such models tend to cover regions well beyond the initial introduction site (Takahashi et al., 

2005)  and should ideally be available ‘on the shelf’ as part of any preparedness plan.  It is likely that 

available models may not be specifically designed for the newly invaded region, but they are still likely to 

be able to provide initial predictions of suitability, activity or abundance at the time of the year, and 

potential spread to nearby locations. These may need some regional customisation, or be revised to 

incorporate newly acquired distribution data to improve their relevance. 

If not available, then their production should be initiated as soon as possible after the introduction is 

recorded.  These models can be based on habitat suitability or climate envelopes, or on known time series 

of vector distributions in other areas (e.g. Kraemer et al 2019). In addition, models including potential 

movement of species due to human transportation (i.e., inside cars or by leapfrog spread) (Eritja et al., 

2017; Tavecchia et al., 2017) may be useful complements. In the case of Ae.aegypti in Europe,  from which 

the species is largely absent, historical distributions can be used to infer likely suitability (Wint et al., 2022 ).   

Basic distribution models, whether off the shelf or newly produced,  may need further modifying when 

disseminated to a wider audience in order to show uncertainties and best or worst case spread extents that 

can be better interpreted by Public Health planners and strategists. Maps of modelled potential distribution 

are likely to be of most use to entomologists who can then use them to define surveillance and monitoring 

sample sites in areas with the highest predicted suitability, and to provide early warning of potential spread 

to areas far from the initial introduction. 
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c) Channels of communication 

After the detection of an invasive mosquito species, such as Aedes aegypti, it is of great importance to 

establish the adequate communications channels with all the actors involved. The message intended for 

each sector should be clearly defined to match the sector priorities and perspectives.  

The roles of each actor from national to local level should be defined according to the situation. For 

example, actions for professionals at each geographic level are defined in the ECDC guidelines for IMS 

(2012). In the practical case presented here, considering the first introduction of Ae. aegypti in a given area, 

definition and implementation of surveillance methods, data reporting and analysis, and means for 

communication (i.e. maps or tables) are key aspects to consider, as well as the involvement of each actor.  

Of all mapping contexts, this is the most challenging, but should not be overlooked as it is also  a very 

efficient way of communicating information.  While many stakeholders are now familiar with maps there is 

no guarantee that they can interpret them properly,  and so clarifying the message  to be conveyed before 

making the map is of paramount importance.  The example in Figure 15 provides a clear picture of where 

the Tiger mosquito has been recorded and where it is thought to be absent,  but is still partially ambiguous 

in that the grey areas which represent no data are often mistakenly interpreted as not present.  Ideally 

therefore such material should be accompanied by clear statements of the intended messages.  

Figure 15: ECDC VectorNet map of Aedes albopictus in Europe 

 

At the national and local level, information can be more spatially precise or specific. At this point 

considerations of resolution and extent will take into account who is the intended audience and the 

objective of the map. Informing the population surrounding a PoE to garner their help for surveillance (e.g. 

Figure 16) may focus on the local scale and local landscape features indicating proximity to residential or 

recreational areas, for example, but generating political attention and support to sustained funding for 

surveillance may need use national level data.  
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Figure 16: Mosquito records in Belgium. Left: local level; Right: national level 

https://mosquito.sciensano.be/map 

 Special attention should be given to what platform will be used for disseminating the maps: paper/fixed vs. 

online/dynamic. Simplicity and clarity need to be prioritised. Online mapping can be attractive when the 

map reader wants to be able to interact with the content but the absence of a clear message (as can be the 

case with data presentation) may interfere with your ability to advocate with audiences not interested with 

processing data and information themselves or interact with content in any way.  

In conclusion: Sampling, modelling and mapping are tools in a set of tools that complement each other in 

various context. None of them covers the full set of activity, and the blend of each will depend on the need. 

This should encourage also to combine expertise through collaborations. Local context matters a great deal 

when faced with an introduction, so that broad scale models or maps may take a secondary role when 

confirmation and local extent are what is at stake. When considering the situation at the national or 

continental level, models and maps may become key in getting a useful overview. But many situations exist 

between these two extremes that need to combine modelling, spatial visualisation and thorough 

understanding of sampling features.  

 

 

  



AIMCOST: From sampling to models and maps.  Marsboom et al, 2023.  MAIN DOCUMENT 

24 
 

6 References 
Araújo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 

33(10), 1677–1688. 

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution 
models: how, where and how many? Methods in Ecology and Evolution, 3(2), 327–338. 

Bartumeus, F., Oltra, A., & Palmer, J. R. B. (2018). Citizen Science: A Gateway for Innovation in Disease-Carrying 
Mosquito Management? Trends in Parasitology, 34(9), 727–729. https://doi.org/10.1016/j.pt.2018.04.010 

Beery, S., Cole, E., Parker, J., Perona, P., & Winner, K. (2021). Species distribution modeling for machine learning 
practitioners: a review. ACM SIGCAS Conference on Computing and Sustainable Societies, 329–348. 

Buffoni, G., & Pasquali, S. (2007). Structured population dynamics: continuous size and discontinuous stage structures. 
Journal of Mathematical Biology, 54(4), 555–595. https://doi.org/10.1007/s00285-006-0058-2 

Chauvier, Y., Descombes, P., Guéguen, M., Boulangeat, L., Thuiller, W., & Zimmermann, N. E. (2022). Resolution in 
species distribution models shapes spatial patterns of plant multifaceted diversity. Ecography, 2022(10), 
e05973. 

ECDC (2012). ECDC guidelines for the surveillance of invasive mosquitoes in Europe. Eurosurveillance. European Centre for 

Disease Prevention and Control (ECDC). 

Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and 
time. Annual Review of Ecology, Evolution and Systematics, 40(1), 677–697. 

Erguler, K. (2020). sPop: Age-structured discrete-time population dynamics model in C, Python, and R. F1000Research, 
7, 1220. https://doi.org/10.12688/f1000research.15824.3 

Erguler, K., Chandra, N. L., Proestos, Y., Lelieveld, J., Christophides, G. K., & Parham, P. E. (2017). A large-scale 
stochastic spatiotemporal model for Aedes albopictus-borne chikungunya epidemiology. PLOS ONE, 12(3), 
e0174293. https://doi.org/10.1371/journal.pone.0174293 

Erguler, K., Mendel, J., Petrić, D. V., Petrić, M., Kavran, M., Demirok, M. C., Gunay, F., Georgiades, P., Alten, B., & 
Lelieveld, J. (2022). A dynamically structured matrix population model for insect life histories observed under 
variable environmental conditions. Scientific Reports, 12(1), 11587. https://doi.org/10.1038/s41598-022-15806-
2 

Erguler, K., Pontiki, I., Zittis, G., Proestos, Y., Christodoulou, V., Tsirigotakis, N., Antoniou, M., Kasap, O. E., Alten, B., & 
Lelieveld, J. (2019). A climate-driven and field data-assimilated population dynamics model of sand flies. 
Scientific Reports, 9(1), 2469. https://doi.org/10.1038/s41598-019-38994-w 

Erguler, K., Smith-Unna, S. E., Waldock, J., Proestos, Y., Christophides, G. K., Lelieveld, J., & Parham, P. E. (2016). Large-
Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse). 
PLOS ONE, 11(2), e0149282. https://doi.org/10.1371/journal.pone.0149282 

Erguler, K., & Stumpf, M. P. H. (2011). Practical limits for reverse engineering of dynamical systems: a statistical 
analysis of sensitivity and parameter inferability in systems biology models. Molecular BioSystems, 7(5), 1593–
1602. http://www.ncbi.nlm.nih.gov/pubmed/21380410 

González, E. J., Martorell, C., & Bolker, B. M. (2016). Inverse estimation of integral projection model parameters using 
time series of population‐level data. Methods in Ecology and Evolution, 7(2), 147–156. 
https://doi.org/10.1111/2041-210X.12519 

Gurney, W. S. C., Nisbet, R. M., & Lawton, J. H. (1983). The Systematic Formulation of Tractable Single-Species 
Population Models Incorporating Age Structure. Journal of Animal Ecology, 52(2), 479–495. 

Guzzetta, G., Montarsi, F., & Baldacchino…, F. (2016). Potential risk of dengue and chikungunya outbreaks in northern 
italy based on a population model of aedes albopictus (diptera: Culicidae). PLoS Negl Trop {…}. 
http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004762 



AIMCOST: From sampling to models and maps.  Marsboom et al, 2023.  MAIN DOCUMENT 

25 
 

Hao, T., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2020). Testing whether ensemble modelling is 
advantageous for maximising predictive performance of species distribution models. Ecography, 43(4), 549–558. 

Hendrickx, A., Marsboom, C., Rinaldi, L., Vineer, H. R., Morgoglione, M. E., Sotiraki, S., Cringoli, G., Claerebout, E., & 
Hendrickx, G. (2021). Constraints of using historical data for modelling the spatial distribution of helminth 
parasites in ruminants. Parasite, 28. 

Hucka, M., Bergmann, F. T., Chaouiya, C., Dräger, A., Hoops, S., Keating, S. M., König, M., Novère, N. le, Myers, C. J., 
Olivier, B. G., Sahle, S., Schaff, J. C., Sheriff, R., Smith, L. P., Waltemath, D., Wilkinson, D. J., & Zhang, F. (2019). 
The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 2 Core Release 2. 
Journal of Integrative Bioinformatics, 16(2). https://doi.org/10.1515/jib-2019-0021 

Ibañez-Justicia, A., Gloria-Soria, A., Den Hartog, W., Dik, M., Jacobs, F. &Stroo, A. (2017) The first detected airline 
introductions of yellow fever mosquitoes (Aedes aegypti) to Europe, at Schiphol International Airport, the 
Netherlands. Parasites & Vectors, 10, 603. 

Iturbide, M., Bedia, J., Herrera, S., del Hierro, O., Pinto, M., & Gutiérrez, J. M. (2015). A framework for species 
distribution modelling with improved pseudo-absence generation. Ecological Modelling, 312, 166–174. 

Južnič-Zonta Ž, Sanpera-Calbet I, Eritja R, Palmer JRB, Escobar A, Garriga J, et al. Mosquito alert: leveraging citizen 
science to create a GBIF mosquito occurrence dataset. Gigabyte. 2022 May 30;2022:1–11. 

Kampen, H., Medlock, J. M., Vaux, A. G. C., Koenraadt, C. J. M., van Vliet, A. J. H., Bartumeus, F., Oltra, A., Sousa, C. A., 
Chouin, S., & Werner, D. (2015). Approaches to passive mosquito surveillance in the EU. Parasit Vectors, 8, 9. 
https://doi.org/10.1186/s13071-014-0604-5 

Koons, D. N., Arnold, T. W., & Schaub, M. (2017). Understanding the demographic drivers of realized population 
growth rates. Ecological Applications, 27(7), 2102–2115. https://doi.org/10.1002/eap.1594 

Kraemer MUG, Reiner RC Jr, Brady OJ, Messina JP, Gilbert M, Pigott DM, Yi D, Johnson K, Earl L, Marczak LB, Shirude S, 

Davis Weaver N, Bisanzio D, Perkins TA, Lai S, Lu X, Jones P, Coelho GE, Carvalho RG, Van Bortel W, Marsboom C, 

Hendrickx G, Schaffner F, Moore CG, Nax HH, Bengtsson L, Wetter E, Tatem AJ, Brownstein JS, Smith DL, 

Lambrechts L, Cauchemez S, Linard C, Faria NR, Pybus OG, Scott TW, Liu Q, Yu H, Wint GRW, Hay SI, Golding N. 

Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019 

May;4(5):854-863. doi: 10.1038/s41564-019-0376-y. Epub 2019 Mar 4. Erratum in: Nat Microbiol. 2019 Mar 21;: 

Erratum in: Nat Microbiol. 2019 Apr 8;: PMID: 30833735; PMCID: PMC6522366. 

Lefkovitch, L. P. (1965). The Study of Population Growth in Organisms Grouped by Stages. Biometrics, 21(1), 1–18. 

Leslie, P. H. (1945). On the Use of Matrices in Certain Population Mathematics. Biometrika, 33(3), 183–212. 
https://doi.org/10.1093/nq/s3-XI.286.498-b 

Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M. I., Snoep, J. L., 
Hucka, M., Novère, N. le, & Laibe, C. (2010). BioModels Database: An enhanced, curated and annotated 
resource for published quantitative kinetic models. BMC Syst Biol, 4, 92. https://doi.org/10.1186/1752-0509-4-
92 

Lunde, T. M., Bayoh, M. N., & Lindtjørn, B. (2013). How malaria models relate temperature to malaria transmission. 
Parasit Vectors, 6, 20. https://doi.org/10.1186/1756-3305-6-20 

Lunde, T. M., Korecha, D., Loha, E., Sorteberg, A., & Lindtjørn, B. (2013). A dynamic model of some malaria-
transmitting anopheline mosquitoes of the Afrotropical region. I. Model description and sensitivity analysis. 
Malaria Journal, 12(1), 28. https://doi.org/10.1186/1475-2875-12-28 

Merow, C., Smith, M. J., Edwards Jr, T. C., Guisan, A., McMahon, S. M., Normand, S., Thuiller, W., Wüest, R. O., 
Zimmermann, N. E., & Elith, J. (2014). What do we gain from simplicity versus complexity in species distribution 
models? Ecography, 37(12), 1267–1281. 

Miranda, M. Á., Barceló, C., Arnoldi, D., Augsten, X., Bakran-Lebl, K., Balatsos, G., Bengoa, M., Bindler, P., Boršová, K., 
Bourquia, M., & others. (2022). AIMSurv: First pan-European harmonized surveillance of Aedes invasive 
mosquito species of relevance for human vector-borne diseases. Gigabyte, 2022, 1–11. 

https://doi.org/10.1515/jib-2019-0021
https://doi.org/10.1002/eap.1594


AIMCOST: From sampling to models and maps.  Marsboom et al, 2023.  MAIN DOCUMENT 

26 
 

Nisbet, R. M., & Gurney, W. S. C. (1983). The systematic formulation of population models for insects with dynamically 
varying instar duration. Theoretical Population Biology, 23(1), 114–135. https://doi.org/10.1016/0040-
5809(83)90008-4 

Palmer, J. R. B., Oltra, A., Collantes, F., Delgado, J. A., Lucientes, J., Delacour, S., Bengoa, M., Eritja, R., & Bartumeus, F. 
(2017). Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nature 
Communications, 8(1), 916. https://doi.org/10.1038/s41467-017-00914-9 

Pasquali, S., Soresina, C., & Gilioli, G. (2019). The effects of fecundity, mortality and distribution of the initial condition 
in phenological models. Ecological Modelling, 402(September 2018), 45–58. 
https://doi.org/10.1016/j.ecolmodel.2019.03.019 

Petrić, M., Ducheyne, E., Gossner, C. M., Marsboom, C., Venail, R., Hendrickx, G., Schaffner, F., & others. (2021). 
Seasonality and timing of peak abundance of Aedes albopictus in Europe: Implications to public and animal 
health. Geospatial Health, 16(1). 

Pulecio-Montoya, A. M., López-Montenegro, L. E., & Medina-García, J. Y. (2021). Description and analysis of a 

mathematical model of population growth of Aedes aegypti. Journal of Applied Mathematics and Computing, 65(1–

2), 335–349. https://doi.org/10.1007/s12190-020-01394-9 

Ross, R. (1908). Report on the prevention of malaria in Mauritius. Waterlow and Sons Limited. 

Ryan, S. J., Lippi, C. A., Lowe, R., Johnson, S., Diaz, A., Dunbar, W., & others. (2022). Landscape mapping of software 
tools for climate-sensitive infectious disease modelling. 

Scharlemann, J. P. W., Benz, D., Hay, S. I., Purse, B. v, Tatem, A. J., Wint, G. R. W., & Rogers, D. J. (2008). Global data 
for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PloS One, 3(1), 
e1408. 

Smith, D. L., Battle, K. E., Hay, S. I., Barker, C. M., Scott, T. W., & McKenzie, F. E. (2012). Ross, Macdonald, and a Theory 
for the Dynamics and Control of Mosquito-Transmitted Pathogens. PLoS Pathogens, 8(4), e1002588. 
https://doi.org/10.1371/journal.ppat.1002588 

Smith, N. R., Trauer, J. M., Gambhir, M., Richards, J. S., Maude, R. J., Keith, J. M., & Flegg, J. A. (2018). Agent-based 
models of malaria transmission: a systematic review. Malaria Journal, 17(1), 299. 
https://doi.org/10.1186/s12936-018-2442-y 

Takahashi, L.T., Maidana, N.A., Ferreira, W.C. et al. Mathematical models for the Aedes aegypti dispersal dynamics: 

Travelling waves by wing and wind. Bull. Math. Biol. 67, 509–528 (2005). https://doi.org/10.1016/j.bulm.2004.08.005 

Tavecchia, G., Miranda, M. A., Borrás, D., Bengoa, M., Barceló, C., Paredes-Esquivel, C., & Schwarz, C. (2017). Modelling the 

range expansion of the Tiger mosquito in a Mediterranean Island accounting for imperfect detection. Frontiers in 

Zoology, 14(1). https://doi.org/10.1186/s12983-017-0217-x 

Tran, A., L’ambert, G., Lacour, G., Beno\^\it, R., Demarchi, M., Cros, M., Cailly, P., Aubry-Kientz, M., Balenghien, T., & 
Ezanno, P. (2013). A rainfall- and temperature-driven abundance model for Aedes albopictus populations. 
IJERPH, 10(5), 1698–1719. https://doi.org/10.3390/ijerph10051698 

Tran, A., Fall, A. G., Biteye, B., Ciss, M., Gimonneau, G., Castets, M., Seck, M. T., & Chevalier, V. (2019). Spatial 
Modeling of Mosquito Vectors for Rift Valley Fever Virus in Northern Senegal: Integrating Satellite-Derived 
Meteorological Estimates in Population Dynamics Models. Remote Sensing, 11(1024). 

Uusitalo, R., Siljander, M., Culverwell, C. L., Hendrickx, G., Lindén, A., Dub, T., Aalto, J., Sane, J., Marsboom, C., 
Suvanto, M. T., & others. (2021). Predicting spatial patterns of sindbis virus (Sinv) infection risk in finland using 
vector, host and environmental data. International Journal of Environmental Research and Public Health, 18(13), 
7064. 

Wint, W., Jones, P., Kraemer, M., Alexander, N., & Schaffner, F. (2022). Past, present and future distribution of the yellow 

fever mosquito Aedes aegypti: The European paradox. Science of the Total Environment, 847. 

https://doi.org/10.1016/j.scitotenv.2022.157566 . 

  

https://doi.org/10.1186/s12936-018-2442-y
https://doi.org/10.1016/j.bulm.2004.08.005
https://doi.org/10.1186/s12983-017-0217-x
https://doi.org/10.3390/ijerph10051698


AIMCOST: From sampling to models and maps.  Marsboom et al, 2023.  APPENDIX 

A1 
 

 

7 Appendix  

7.1 Sampling 

Defining a sampling strategy is a complex process. It involves deciding how often to sample, defining the 
sampling locations, and defining the protocols which set out what parameters to record during your 
sampling. 

7.1.1 Sampling strategies 

7.1.1.1 Cross-sectional sampling 

A cross-sectional sampling is a sampling where you sample the location once and then move on to the 
next location, this method therefore creates a dataset with a specific sampling location at a single time 
point. This way of sampling allows to cover a wider area with the same number of traps. The results of 
this sampling method can be used for the presence and absence modelling of species. Especially in areas 
with an unknown distribution this a good method. If the aim of the sampling campaign is to detect the 
presence of the species, factors such as seasonality need to be taken into account. 

7.1.1.2 Longitudinal sampling 

Longitudinal sampling differs from cross-sectional sampling in that the same location is sampled at 
multiple time points. This method allows to monitor population dynamics over time which makes this 
data better suited for mathematical modelling. The time- interval between location visits has an 
important influence on the data. The aim of the monitoring will also influence the time-interval. The 
time interval also doesn’t have to be consistent throughout the season, e.g. higher frequency during the 
peak of the season or daily sampling during one week per month. 

The third option constitutes a combination of both methods where you do a repeated cross-sectional 
sampling where the same location is not constantly monitored but is revisited several times throughout the 
season. This method still might provide some information on dynamics and effectiveness of the cross-
sectional sampling. 

7.1.2 Choosing sampling locations 

If you have no idea about what determines a species’ location, it is advisable to carry out sampling 
throughout your area of interest and to set the sample size so as not to miss habitats that are less 
well represented, but which could be important for your species. Sampling locations can be assigned 
as points, along lines (transects) or inside quadrants. The location of the sampling locations can be 
assigned in a number of ways: completely random, randomly within defined zones (stratified random) 
or systematically (Figure 17).  

If you already have an idea of the environmental preferences of your species, you can expect certain 
variables to influence the absence or presence of your species. In these cases, sampling locations are 
assigned to different geographical zones or strata related to the biology of the vector like vegetation 
category. Sampling locations can be assigned to ensure that each zone is sampled at the same intensity, 
or alternatively, so that the more favourable areas are sampled more frequently. 
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Figure 17:ways to place sample locations 

7.1.3 AIMSURV sampling protocols 

The AIMSURV Initiative was launched in 2020. Its primary objectives were to conduct standardised 
surveillance for invasive mosquito species at a continental level, while recognising that field teams had access 
to different level of support for these activities. As a result, two protocols were developed: a set of minimum 
requirements designed to capture the peak annual population levels; and a more detailed sampling strategy 
designed to sample vector population throughout the year 

7.1.3.1 Minimum requirements 

• Traps 

- Density of 5 ovitraps per location with 15 to 100 m of distance between each of the traps, on a minimum 

of 3 locations, distant by 10 Km or (better) more; The sampling locations should share similar 

environment, e.g. garden of single family houses in residential urban/peri-urban areas, public parks near 

residential areas, recreational areas. 

- As a substrate for AIM spp. female oviposition, a wood tongue depressor (1.7*15 cm) should be used. 

• Period of sampling 

- A minimum of 3 months sampling is required, making sure that the population peak of the targeted 

species is included within that period (e.g. Spain: from September to November). 

- This applies to ovitraps and Mosquito Alert. 

• Frequency of sampling 

- Conduct sampling every two weeks during the three minimum months of sampling. 

• Parameters to record 

- Geolocation: latitude and longitude of the position of each trap; Use the decimal system (i.e. 46.759463 

N, 3.568237 E) and not the degree, minutes, seconds system. 

- Name of municipality/county/district (according to the country) and locality (see format in VECMAP® 

guidelines). 

- Start and End date refer to the trapping event for which the data are reported (e.g. a period of 14 days 

/ 2 weeks for ovitraps), in order to get, for the final analysis, numbers per trap/night. 

- Land use category (see VECMAP® guidelines page 13 for possible options of the land use field). 

- Trap status: report technical issues that could have influenced the trapping result (negative or not), e.g. 

in case of trap missing or broken, oviposition support missing, battery out, etc.  

- When/where no AIM eggs are sampled or adults are caught, 0 (absences) have to be reported. 
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7.1.3.2 Recommended AIMSURV sampling requirement 

More locations and dates samples to assess seasonal occurrence. 

• Locations 

- Same density of ovitraps (5 per site) but conducted at more than 3 locations, distant as much as possible 

from each other to cover a wide area, at locations either sharing similar environments or showing 

different conditions (e.g. urban areas, rural areas, high altitude areas...). 

- Adult traps can be also used, BG-Sentinel™ trap baited with BG-Lure™ and C02 is recommended as the 

standard; One trap-night per site per week is recommended. 

• Period of sampling 

- Whole mosquito season; The period of sampling is suggested to be increased in order to ensure to 

record the start, the peak and the end of the population activity in each site of sampling (e.g. May – 

November in Central Europe). 

- This applies to ovitraps, adult traps, and Mosquito Alert. 

• Frequency of sampling 

- Weekly sampling during the three minimum months of sampling. 

- Weekly sampling during the whole season (start-peak-end) for adults and/or eggs. 

• Parameters to record 

- Same as for minimum requirement, plus: 

- Daily or weekly record of meteorological parameter (maximum, minimum, average temperature) per 

site, collected by using data loggers or local weather stations. 

- A map showing the sampling locations (numbered) and countries’ administrative units can be provided. 

7.2 Reporting requirement details 

Published results are often incomplete, incompatible or inconsistent. This makes assembling databases of 
vector distribution extracted from the literature very challenging, and the process would yield much more 
useful outputs if all published vector distribution reports contained a minimum set of standard components, 
as detailed below. 

7.2.1 Sampling Location 

Sample site locations should, if possible, be provided as geographical xy point coordinates in latitude and 
longitude, with some indication of precision. If point georeferencing is not possible, then settlement and 
admin unit names with xy coordinates of their centres should be given. It should be noted that data locations 
with a precision of less than NUTS2 level or its equivalent are only suitable for large scale mapping, and cannot 
be used for detailed analysis. Many journals now insist on the data used for publications being made available 
with the publication, and so it is also recommended that the sample locations are provided as an ESRI 
compatible vector format file. Additional sample site details,  such as whether indoors or outdoors should 
also be provide where relevant. 

7.2.2 Sampling details 

The sampling method used affects not only the species that could theoretically be collected but also the 
number and type (e.g. life stage) of specimens caught. Reported results should therefore include sample 
method. For each trap the sampling dates, duration (e.g. days), and sample (e.g. trap) numbers. The 
start and end date of each sample event should be given. 

7.2.3 Sampled species and numbers 

The most basic of results consist of simple presence records for each species. Sampled numbers are 
preferable, if available, but it is emphasised that these are only useful if the sampling details provided allow 
the sample numbers to be standardised to number per trap per day (or hour or week). It is often a temptation 
to provided results only for the academically or epidemiologically important species, and to leave out the 
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information about less high-profile species in the interest of space. As a result, a lot of distribution 
information is discarded, which could be supplied as Supplementary Information even if there is not enough 
room in the main text. Such non-priority samples could also be provided as just presence rather than 
numbers. 

7.2.4 Absences 

It is just as important to know where a species in NOT found as to record its presence or abundance, 
especially at the beginning or end of a season, or on the edge of its range. Absence or zero values can 
be inferred for all species that are recorded at a particular location during a sampling programme: if, for 
example it is recorded once, then zero or absent can be attributed to every other sample in that series. 

7.2.5 Vector species 

The method of specimen identification for each species, species group or species complex should be 
specified. Specimens that are not reliably identified to the level of species, species group or species 
complex should not be reported. If the identification method used is not accepted as definitive, the 
specimen should not be reported. If the number of specimens caught is not reported, the "reported" 
status is a mandatory minimum data requirement. 

7.2.6 Useful Covariates 

Basic Covariates suggested for modelling vectors 

The most widely used are climatic (temperature and precipitation),  vegetation (Normalised Difference 

Vegetation Index,  Enhanced Vegetation Index),  Land Cover,  Elevation, and human population  density. All 

these except elevation are available for time series.   Some pointers for obtaining these datasets are given 

below.   

Daily, monthly and annual Temperature data are available from:  

• Satellite imagery (for example MODIS,), referred to as Land Surface temperature. Both day and 

night temperature are provided at daily,  8 day, monthly or annual intervals,  and at  500m, 1, 5 or 8 

kilometer resolutions,  from 2000 onwards.  Two common satellite sources are available:  MODIS 

from 2000 onwards but unreliable since mid 2022,  and VIIRS from 2012 onwards.  These  can be 

downloaded from https://search.earthdata.nasa.gov/search, usually as hdf format files. EU Sentinel 

satellite data is also regularly produced,  but is not yet provided in a user friendly format 

• Another common source  of temperature data is the ECWMF weather station based data.  This also 

provides global daily, monthly and annual temperature time series data, but it is air temperature 

rather than land surface temperature. Unlike the satellite data, these are also available as 

minimum, mean and maximum values. The data  come as netcdf or GRIB format files and can be 

downloaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

levels?tab=form.  They are usually available at about 25km resolution,  but scripting tools can be 

used to generate and download higher resolutions (https://cds.climate.copernicus.eu/toolbox-

editor/9616) 

Daily Monthly and Annual Precipitation data are also available from the Era5 Climate Data Store:  

Long term averages such as  for 1961-2000 and  projected estimates (e.g. 2050 and 2080 for different 

climate change scenarios) for temperature and precipitation are available at https://worldclim.org. This site 

also provides a set of long term “bioclimatic indicators” such as temperature of warmest quarter,  which 

are popular choices for model covariates. 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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Vegetation indices and other indicators are available from: 

• Satellite imagery via  MODIS (since 2001) and VIIRS (since 2012) from Earthdata 

(https://search.earthdata.nasa.gov/search).  Like temperature they are available at different 

resolutions and time periods (daily, 16day, monthly and annual).  Two indices are available:  NDVI 

and EVI,  - with the latter being used more widely in recent -years.   The European Sentinel 

vegetation greenness data are coming online through the Copernicus and Earthdata sites,  but have 

only been available since 2018,  so are not yet suitable for longer time series. 

• Land cover – i.e. estimates of shrubland or forest are also useful – especially to produce masks.  

Good sources are Corine (for EU only) as well as http://www.earthenv.org/  and ESA CCI (previously 

Globcover) at http://maps.elie.ucl.ac.be/CCI/viewer/download.php. 

GMTED (https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php) is a good source of 

elevation data produced by USGS. This produced minimum, mean and maximum values for each pixel 

location.   

Estimates of human population at up to 100m resolutions, by age and gender, and  from 2001 is available 

from  https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php. 

 

7.3  Spatial modelling methods 

Non-Linear Discriminant Analysis (NLDA) are best suited to presence/absence (0, 1) data or discrete 
(classified) data. It is possible to model continuous data if these are first binned into discrete classes using 
the threshold clustering tool. Better results may be obtained by using a model that is specifically geared to 
continuous data. NLDA is often considered superior to logistic regression as it models a complete multivariate 
normal distribution rather than a monotonic logit curve. A normal curve is more ecologically interpretable. 
Models can be bootstrapped. Clustering of data handles spatial heterogeneity of habitat niches and zones. 

Random Forest can be run in regression mode (to predict continuous data) or classification mode (to 
predict presence/absence data or categories). Often quoted to handle complex interactions and 
correlated covariates very well. Useful for datasets with a high number of covariates compared to data 
points as it can remove redundant variables.  Can be used to split   the study area into several ecozones 
with a pre-defined zone layer. Variable importance metrics are generated giving a clear indication of the 
strongest covariates. Can elegantly handle non-linear effects in covariates as trees are grown via a 
binomial split. Relatively fast, compared to a bootstrapped GLM or NLDA. 

Generalised Linear Model (GLM) methodology Is more suited for continuous data, but can handle 
presence/absence data as well (with Model family= binomial). Can be used to split the study area into 
several eco-zones with a pre-defined zone layer to deal with spatial variability. Many options are 
available so the model can be tailored to your data. For example, count data with negative binomial or 
Poisson families, proportion data with the binomial family, zero-weighted continuous data with the 
Tweedie family, for continuous data, a least-squares regression equivalent with the Gaussian family and 
nonlinear distributed responses with the exponential family. Models can be bootstrapped. Can handle 
non-linear effects in covariates (by opting to pair each covariate with its square). GGWR option allows 
investigation of spatial variability in regression coefficients to see if spatial heterogeneity is an important 
issue in your training set. It has functionality to remove temporal trends and to account for spatial 
autocorrelation by using an autoregressive term or mixture model. 

Boosted Regression Trees  (BRT) is an evolved form of Random Forest that can elegantly handle non-
linear effects in covariates as trees are grown via a binomial split. Can be seen as an improvement on 
random forests as the algorithm learns during an iterative process, rather than just outputting the 
average of a set of independent trees. Most of the tools for BRT also provide visualisation and 
quantification of variable interactions. 

https://search.earthdata.nasa.gov/search
http://www.earthenv.org/
https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php
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7.4 Mathematical modelling frameworks 

Numerous mathematical frameworks exist, which can be used to represent climate- and environment-
driven population dynamics. Compartmental models represent components of a system as groups of 
entities (individuals) in distinct states, such as groups of "mosquito larva" or "susceptible human". One of 
the most common mathematical frameworks used to develop compartmental models of vector 
populations and disease transmission is the ordinary differential equation (ODE), which dates back to 
the early twentieth century (Ross, 1908; D. L. Smith et al., 2012). ODE models have been developed to 
represent climate-driven population dynamics of many vector species (Lunde, Korecha, et al., 2013; Tran 
et al., 2013). Alternatively, using the delayed differential equations (DDEs) framework, Nisbet, Gurney, 
and Lawton developed a stage-structured DDE model to represent insect population dynamics (Gurney 
et al., 1983; Nisbet & Gurney, 1983), which links present dynamics with past environmental conditions 
using time lags. Partial differential equations (PDEs) incorporating life processes as part of the drift and 
diffusion components have also been utilised for the same purpose (Buffoni & Pasquali, 2007; Pasquali et 
al., 2019).  

Matrix population models (MPMs) are discrete-time structured population models, making use of 
carefully designed projection matrices and matrix algebra to project population structure from one 
census date to the next. MPMs are commonly used to represent population heterogeneity by grouping 
individuals into distinct age (Leslie, 1945) and/or development stage classes (Lefkovitch, 1965). Recently, 
they have been applied to representing life processes driven by age as well as heat accumulation 
(Erguler, 2020; Erguler et al., 2022).  

Alternatively, agent-based models (ABMs) explicitly represent each individual (even be it a single 
mosquito) and associate respective state variables, response functions, and links to internal and 
external drivers for each (N. R. Smith et al., 2018). ABMs are inherently stochastic and they readily 
represent spatial heterogeneity (e.g., vector movement or heterogeneous control applications) and 
intrinsic stochasticity (e.g., different survival and development rates). However, such flexibility requires 
programmers experienced in model construction and extensive computational resources to run 
simulations, which are common restrictions in the adoption of such methods. 

7.5 Map types and content 

Many options exist for mapping but not all can be used for all variables. We only mention here the most 
widespread.  

Figure 18: Representations offered by the free online mapping tool Magrit.  
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In the blue box at the top left of Figure 18 you can see two maps used to map continuous variables (so with 
different shades of a single colour): a proportional symbol representation on the left, and a choropleth map 
on the right. The third map in the top line is another choropleth with categorical data (so with different 
colours), and the first map on the second line is a dual variable symbol map with a categorical variable. The 
box on the last line highlights a simple symbol map, useful for mapping objects such as landmarks or trapping 
sites. More detail here https://magrit.cnrs.fr/docs/carto_fr.html. 
This demonstrates that different types of data should be mapped using different types of maps. The 
two common map types are those using proportional symbols so that the symbol size relates directly to 
the data value (Figure 19); and “choropleth” maps, in which the colour used to fill a polygons such as an 
administrative unit is determined by the data value (Figure 20).  

Figure 19: Proportional symbol map, dengue cases, ECDC) 

 

Proportional symbol maps are most appropriate for absolute numbers, whilst ratio variables can be 
mapped as choropleth, as illustrated in in Figure 19 and Figure 20,  where the absolute number of cases 
for comparing South East Asia and South Asia can be very different whilst the incidence rates are more 
comparable. Choropleths are unfortunately often used to map simple numbers for variable which can 
produce very misleading results and colour differences may be too limited to represent large value 
ranges. 

Figure 20: Choropleth map, ratio variable: dengue incidence, ECDC 

 

 

https://magrit.cnrs.fr/docs/carto_fr.html
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7.5.1 The language of maps: graphic semiology 

The language of maps pertains to the colours, textures and symbols that we can use to map various 
phenomena. As pictured in Figure 21, various options exist to show differences between spatial objects, 
that include colour (and its variation), size, shape and texture. Coherence and readability are key here. 
Coherence with common place understanding of colour (e.g. green/blue usually perceived as 
“cold”/low/ positive and red as “hot”/high/negative or dangerous) and habits in a field. Readability as 
helping to fulfil the map’s objective to convey a specific message.  

A summary of the foundational text by French cartographer Jacques Bertin can be found here: 
https://innovis.cpsc.ucalgary.ca/innovis/uploads/Courses/InformationVisualizationDetails/09Bertin.pd
f . It provides a good introduction to these important choices made in cartography – everything you 
could read about this will be based on these principles, even though further evolution is to be expected 
in the context of the growing prominence of on-screen viewing.  

Figure 21: Example legends 

Source: National Information Security, Geospatial 
Technologies Consortium (NISGTC) 

Source QGIS documentation 

7.6 Other mapping issues 

7.6.1 Projection systems 

Spatial analysis data is inherently linked with projection systems. All spatial data is projected using a spatial 
or coordinate reference system (SRS or CRS. During analysis it is important that all data and co- variates are 
projected and projected with the same CRS. Therefore, it is important to always check the CRS of the different 
data and convert when necessary.  

Three common projection families are cylindrical, conical and planar (Figure 22). All projections distort 
(stretch or compress) reality when drawn on paper. The rectangles on each map in Figure 22 are an equal 
number of degrees wide and deep, and the projection sets how long and wide each degree is on paper in 
different ways. As a result, they look very different on a map depending on the projection used, and so 
drawing a map in one projection on top of one in a different projection can cause spectacular errors. 

 

https://innovis.cpsc.ucalgary.ca/innovis/uploads/Courses/InformationVisualizationDetails/09Bertin.pdf
https://innovis.cpsc.ucalgary.ca/innovis/uploads/Courses/InformationVisualizationDetails/09Bertin.pdf
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Figure 22: The three major map projections systems 
a) cylindrical, b) conical c) planar. 

 

Each projection is designed to be useful in different situations. Cylindrical projections, for example, show 
correct shapes and directions, but the larger the area the less accurate are the distances measured from the 
map. Conical projections are good for mapping regions aligned east to west, and planar ones are better for 
mapping circular regions rather than rectangular ones.  

There are thousands of projections. A good and easy system to distinguish and identify a CRS is by its EPSG 
code (https://epsg.io/). The Most common is EPSG:4326, which is a global CRS. A common one for Europe is 
EPSG:3035 which project European countries in a more realistic way. 

7.7 Resources for mapping 

7.7.1  Online 

https://www.bloomberg.com/news/articles/2015-06-25/how-to-avoid-being-fooled-by-bad-maps (last 

checked August 9th, 2022) 

Map projection (6min video) https://www.youtube.com/watch?v=kIID5FDi2JQ&t=225s Course on 

cartography https://storymaps.arcgis.com/collections/bc79ea24ec354f77bfa7616b247ac986 

7.7.2  Books 
Monmonier M, 2018, How to lie with maps. Third edition. Chicago University Press 

Kraak M.J., Ormeling F., 2020, Cartography. Visualization of Geospatial data. Fourth edition. CRC Press 

Buffoni, G., & Pasquali, S. (2007, 3). Structured population dynamics: continuous size and discontinuous 

stage structures. Journal of Mathematical Biology , 54 , 555-595. 

Retrieved from http://link.springer.com/10.1007/s00285-006-0058-2 doi:10.1007/s00285-006-0058-2 

Erguler, K., Pontiki, I., Zittis, G., Proestos, Y., Christodoulou, V., Tsirigotakis, N., . . . Lelieveld, J. (2019, 

12). A climate-driven and field data-assimilated population dynamics model of sand flies. Scientific 

Reports, 9 , 2469. Retrieved from https:// doi.org/10.1038/s41598-019-38994-w doi: 

10.1038/s41598-019-38994-w 

Erguler, K., & Stumpf, M. P. H. (2011). Practical limits for reverse engineering of dynamical systems:  a 

statistical analysis of sensitivity and parameter inferability   in systems biology models. Molecular 
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